Parameter Adjustment of EROS Humanoid Robot Soccer using a Motion Visualization

Authors

  • Anhar Risnumawan Politeknik Elektronika Negeri Surabaya
  • Rokhmat Febrianto Politeknik Elektronika Negeri Surabaya
  • Indra Adji Sulistijono Politeknik Elektronika Negeri Surabaya
  • Eny Kusumawati Politeknik Elektronika Negeri Surabaya

DOI:

https://doi.org/10.52435/complete.v2i1.203

Keywords:

humanoid soccer robot, motion visualization, ROS, URDF, gazebo simulator

Abstract

Humanoid robot is a robot whose overall appearance is formed based on the human body and can interact with equipment and the environment created by humans. The robot's balance becomes fundamental in carrying out various tasks in designing humanoid robots. To deal with this, the adjustment of the humanoid robot movement is crucial in this work, research related to the virtual visualization of robots. Virtual robot visualization can be done by creating a simulator that contains dynamic parameters, including the physics of the robot. With the simulation containing dynamic parameters, the humanoid robot movement can be tried many times until the robot movement is robust. Applying the URDF (Unified Robot Description Format) model to the Gazebo simulator, which is supported by the ROS (Robot Operating System) framework, can make a simulator with dynamic parameters mimicking a real environment. In order to make a robust robot motion, feedback is needed in position and torque to find out the difference between simulation and reality. On the other hand, simulations can be done without cost or risk and, most importantly, mimic the actual robot soccer environment.

References

Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, 'The intelligent ASIMO: System overview and integration', in IEEE/RSJ international conference onintelligent robots and systems, 2002, vol. 3, pp. 2478–2483.

N. A. Radford et al., 'Valkyrie: Nasa's first bipedal humanoid robot', Journal of Field Robotics, vol. 32, no. 3, pp. 397–419, 2015.

T. G. Newsroom, 'Toyota Unveils Third Generation Humanoid Robot T-HR3.(21 November 2017)', Retrieved March, vol. 21, p. 2018, 2017.

J. Englsberger et al., 'Overview of the torque-controlled humanoid robot TORO', in 2014 IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 916–923.

G. Fichtet al., 'NimbRo-OP2X: Adult-sized open-source 3D printed humanoid robot', in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), 2018, pp. 1–9.

A. Farchy, S. Barrett, P. MacAlpine, and P. Stone, 'Humanoid robots learning to walk faster: From the real world to simulation and back', in Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, 2013, pp. 39–46.

G. Ficht, P. Allgeuer, H. Farazi, and S. Behnke, 'NimbRo-OP2: Grown-up 3D printed open humanoid platform for research', in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), 2017, pp. 669–675.

P. Allgeuer, H. Farazi, M. Schreiber, and S. Behnke, 'Child-sized 3D printed igus humanoid open platform', in 2015IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 2015, pp. 33–40.

R. W. Contributors, 'ROS/Introduction-ROS Wiki'. Aug, 2022.

R. O. S. Wiki, 'URDF', URL: http://wiki. ros. org/urdf.(Accessed 10 April 2022), 2022.

'RigidBody Dynamics Library: Mainpage'. https://rbdl.github.io/ (accessed Mar. 23, 2022).

M. Missura and S. Behnke, 'Self-stable omnidirectional walking with compliant joints', 2013.

H. Farazi et al., 'RoboCup 2016 Humanoid TeenSize Winner NimbRo: Robust Visual Perception and Soccer Behaviors', arXiv preprint arXiv:1809.11127, 2018

Downloads

Published

2022-07-30

Issue

Section

Articles