Identifikasi Interaksi Protein-Protein Meningitis Menggunakan ClusterONE dan Analisis Jaringan

Authors

  • Mohammad Hamim Zajuli Al Faroby Sains Data, Institut Teknologi Telkom Surabaya https://orcid.org/0000-0001-6500-270X
  • Helisyah Nur Fadhilah Sains Data, Institut Teknologi Telkom Surabaya
  • Fikri Hartanta Sembiring Sains Data, Institut Teknologi Telkom Surabaya

DOI:

https://doi.org/10.52435/jaiit.v4i1.180

Keywords:

ClusterOne, Analisis Jaringan, Meningitis, Interaksi Protein-Protein

Abstract

Patogen penyebab Meningitis menyebabkan peradangan pada selaput otak. Kondisi ini menyebabkan kondisi kronis jika dibiarkan dalam jangka waktu lama. Patogen Meningitis menyerang protein tertentu yang berkaitan langsung dengan fungsional selaput otak. Dengan mendeteksi protein signifikan dari Meningitis dapat kita dapat menganalisis lebih jauh untuk menemukan inhibitor dari patogen tersebut. Menemukan protein yang signifikan dengan menganalisis jaringan interaksi protein yang terlibat ketika meningitis menginfeksi. Data jaringan protein diolah untuk mendapatkan klaster protein yang signifikan. Data jaringan pada klaster terbaik digunakan untuk mencari protein tertentu yang memiliki pengaruh signifikan. Skor sigifikansi protein berdasarkan nilai karakterisktik simpul pada jaringan graf dengan mendapatkan nilai eigen dan vektor eigen. Nilai keseluruhan karakteristik diperoleh dari hasil perkalian vektor eigen dengan vektor karakteristik simpul yang menghasilkan nilai skalar. Kami menemukan protein yang paling signifikan terhadap Meningitis adalah TLR2, hal ini diketahui dari nilai keseluruhan karakteristiknya yang paling tinggi dibandingkan protein lainnya.

References

Al-Sadi, R., Nighot, P., Nighot, M., Haque, M., Rawat, M., & Ma, T. Y. (2021). Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2–Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. The American Journal of Pathology, 191(5), 872–884. https://doi.org/10.1016/J.AJPATH.2021.02.003

Al Faroby, M. H. Z., Irawan, M. I., & Puspaningsih, N. N. T. (2020). Prediction insulin-protein interactions associated based on ontology genes using extreme gradient boosting and centrality method. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Contr, 4(5), 253–262. https://doi.org/10.22219/kinetik.v5i4.1076

Amberger, J. S., Bocchini, C. A., Scott, A. F., & Hamosh, A. (2019). OMIM.org: Leveraging knowledge across phenotype-gene relationships. Nucleic Acids Research, 47(D1), D1038– D1043. https://doi.org/10.1093/nar/gky1151

Barthélemy, M. (2004). Betweenness centrality in large complex networks. European Physical Journal B, 38(2), 163–168. https://doi.org/10.1140/epjb/e2004-00111-4

Cook, H. V., Doncheva, N. T., Szklarczyk, D., von Mering, C., & Jensen, L. J. (2018). Viruses.STRING: A virus-host protein-protein interaction database. Viruses, 10(10), 519. https://doi.org/10.3390/v10100519

Orang, Y., Gao, C., Chen, X., Hu, Y., Sadiq, R., & Deng, Y. (2015). A new closeness centrality measure via effective distance in complex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(3), 033112. https://doi.org/10.1063/1.4916215

Hu, S., Kuwabara, R., Navarro Chica, C. E., Smink, A. M., Koster, T., Medina, J. D., de Haan, B. J., Beukema, M., Lakey, J. R. T., García, A. J., & de Vos, P. (2021). Toll-like receptor 2- modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials, 266, 120460.

https://doi.org/10.1016/J.BIOMA TERIALS.2020.120460

Joo, H., Kim, H. S., Kim, S., & Sivakumar, B. (2021). Complex networks and integrated centrality

measure to assess the importance of streamflow stations in a River basin. Journal of Hydrology,

, 126280. https://doi.org/10.1016/J.JHYDROL.2021.126280

Kohil, A., Jemmieh, S., Smatti, M. K., & Yassine, H. M. (2021). Viral meningitis: an overview.

Archives of Virology, 166(2), 335–345. https://doi.org/10.1007/S00705-020-04891-1

Li, M., Li, D., Tang, Y., Wu, F., & Wang, J. (2017). CytoCluster: A Cytoscape Plugin for Cluster

Analysis and Visualization of Biological Networks. Orang Journal of Molecular Sciences, 18(9).

https://doi.org/10.3390/IJMS18091880

Nepusz, T., Yu, H., & Paccanaro, A. (2012). Detecting overlapping protein complexes in protein-

protein interaction networks. Nature Methods 2012 9:5, 9(5), 471–472.

https://doi.org/10.1038/nmeth.1938

Principi, N., & Esposito, S. (2019). Bacterial meningitis: new treatment options to reduce the risk of

brain damage. Expert Opinion on Pharmacotherapy, 21(1), 97–105.

https://doi.org/10.1080/14656566.2019.1685497

Ragueneau, E., Shrivastava, A., Morris, J. H., del-Toro, N., Hermjakob, H., & Porras, P. (2021).

IntAct App: a Cytoscape application for molecular interaction network visualization and analysis. Bioinformatics, 37(20), 3684–3685. https://doi.org/10.1093/BIOINFORMATICS/BTAB319

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074

Tang, X., Wang, J., Zhong, J., & Pan, Y. (2014). Predicting essential proteins based on weighted degree centrality. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(2), 407–418. https://doi.org/10.1109/TCBB.2013.2295318

Downloads

Published

2022-05-31

How to Cite

Al Faroby, M. H. Z., Nur Fadhilah, H., & Hartanta Sembiring, F. (2022). Identifikasi Interaksi Protein-Protein Meningitis Menggunakan ClusterONE dan Analisis Jaringan. Journal of Advances in Information and Industrial Technology, 4(1), 17–28. https://doi.org/10.52435/jaiit.v4i1.180

Issue

Section

Research Article